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AAS 95-307

DESIGN OF HIGH-ACCURACY MULTIPLE FLYBY
TRAJECTORIES USING CONSTRAINED OPTIMIZATION

Dennis V. Byrnes’
Larry E. Bright+

Over the past two decades the extremely difficult problcm of efficiently
finding optimal trajectories with multiple gravitating bodies has frequently
been addressed. The technique describec~ in this paper provides distinct
advantages over previous formulations. The trajectories are numerically
integrated without a requirement for solutions of rnultiplo boundary value
problems. A novel method of splitting the trajectory into independent legs
with each leg independently specified by any convenient set of parame-
ters is described. Any of these parameters may then be subject to con-
straints. The nonlinear constrained optimization problem is then solved
as a sequence of linear problems, Examples for several cjeep space mis-
sions are given.

INTRODUCTION

The extremely difficult problem of efficie]ltly finding optimal trajectories that in-
volve close flybys of multiple gravitating bodies has been adciressed by many investiga-
tors over the past two decades using a variety of methods (Ref. 1 -4). Although the
method and particular formulation described in this paper are in part directly related to
several of those methods, several new advances have been made. A novel way of splitting
{he trajectory into legs, removal of the time consuming and sometimes numerically un-

stable requirement of solving many boundary value problems, ;ind the continued advance
in computing capability of modern computer workstations have allowed for significant
improvements in speed, ease of use, numerical stability and accuracy of the resulting tra-
jectory design.

METHOD

Optimal trajectories are determined starting from a specified state vector, or from
launch or flyby body conditions which are consistent with a specified set of constraints
and a specified flyby body sequence. optionally, in the case of interplanetary trajectories,
certain arrival conditions may also be specified, Tile trajectory optimization technique de-
scribed in this paper provides several disti net advantages over p]evious  formulations.

First, fully numerically integrated trajectory modeling is used. That is, no approx-
imations to the trajectory are made and the inclusion of any level of complicated force
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mo(iels desired is allowed. Trajectory modeling is based on numerical integration of the
equations of motion of a point-mass spacecraft subject to gravitational accelerations.
Additional effects modeled are impulsive and/or finite motor burns and solar pressure.
The gravitational models include, in addition to the inverse-square acceleration due to the
primary central body, point-mass gravitational accelerations due to any combination of
sun, planets, satellites, asteroids or comets plus acceleration due to the oblateness of the
central body,

Second, only trajectory propagation is used so there is no requirement for solu-
tions of multiple boundary value problems as inte] mediate steps before optimization. This
is accomplished by the novel method of splitting the trajectory into independent legs,
which are then subjected to constrained optimization. Initially these legs will, in general,
not be continuous in either position or velocity. Consequently none of the numerical
problems associated with the solving of a series of boundary problems will arise. Position
continuity in the final trajectory is achicvecl  by imposing constraints on the optimization.

Third, each of the trajectory legs may be specified by any convenient set of pa-
rameters particularly useful for that leg, Any of these parameters may then be subject to
constraints, Trajectory constraints may inclucle  flyby  altitudes, b-plane angles, latitudes,
times of closest approach to flyby bodies, inclinations 01 essentially any other orbital pa-
rameter with respect to either the primary or secondary bocly  including the Cartesian state
vector. There may also be constraints on maneuvers such as tilne, clircction,  location and
mode of execution. Any of these constraints may be equality, inequality or bounds con-
straints, and will, of course, be closely related to mission operations requirements and
science objectives.

Fourth, the solution to the nonlinear optilnization  problem is found by solving a
sequence of linear problems that converges to the optimal nonlinear solution. l’he method
of solution used is a parameter optimization algo] ithm based on a series of linearization
of the “real” highly nonlinear problem. The optin]ization  algorithm changes the indepen-
dent variables (a series of estimated states along the trajectory, usually at flybys) on suc-
cessive iterations to reduce the cost function (total AV). Duc to the complexity of some
problems, it may sometimes be necessary for the user to actively control the optimization
process to achieve convergence. This is particularly true when a new problem is ad-
dressed with only some very approximate guesses available to specify the problem. A
variety of control procedures are available for these situations. ]n general, though, the ro-
bustness of this formulation requires little or no user interaction with the optimization
once a feasible problem has been posed.

Finally, although it is not the subject of this paper, our software implementation of
this method (in a new program called CAT() – <:omputcr  lJSorithm  for Dajectory  Qp-

timiz,ation)  makes use of FORTRAN 90, modern techniques of object oriented program-
ming, and extremely fast UNIX based workstation computers. 1“’he result is a very rapid
and convenient way of producing very high precision, optimal trajectory designs.

I OPTIMIZATION PROBLEM STRUCTURE

I Trajectory Structure

I A complete trajectory is broken up into a sequence of user-defined trajectory legs,
The legs are contiguous in time. The boundary between two successive legs is referred to
as a trajectory breakpoint, On each trajectory leg there is a unique distinguished point re-
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ferred to as the control point for that leg. A set of 7 control point variables is defined at
each control point by the user, One of the variables is an epoch and the remaining 6 are a
pararneterization  of the spacecraft state (position and velocity) at that epoch. The specific
parametrization of the state is chosen from a wide rang,e of possibilities (numbering in
the hundreds) separately for each trajectory leg.

The control point variables collectively, over all legs of the trajectory, determine
the initial conditions for trajectory propagation and are a subset of the independent vari-
ables for optimization. Any leg of the trajectory ]nay optionally have an additional three
independent variables that are associated with a nlaneuver at the beginning of the trajec-
tory leg. These AV variables may be included in the indepcnclcnt  variable set to impose
constraints on them.

Breakpoints and control points occur in alternating fashion along a trajectory. For
example, on a trajectory with n legs, they occur in the following order:

1~~, c], B], C2, . . . . c,,, B,,,

where the Bi’s are breakpoints and the Ci’s are control points. ~’he entire trajectory begins
at the initial brcakpoi~t Bo and ends ‘at the te] rein;
schematically in l~igurc 1.

Propagate F’ropagate

breakpoint, B,l. This is sh~wn

(AR) AR AR (AR)
(AV) AV AV (AV)

Figure 1. Trajectory Schematic (CA’I’0)

By contrast, the methocl  described in Refc] ences 1 and 2 recluired the solution of a
boundary value problem on each leg that required greater numerical complexity and
computation time. This earlier method is shown schematically in I;igure 2.

Target Target Target
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Propagate

+
Propagate +
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(AV) AV AV

Figure 2. Trajectory Schematic (l~;arlier  Method)

Trajectory Generation

On a given iteration of the optimization procedure, a trial trajectory must be gen-
erated from the current values of the indcpenclen[  variables. 1 ‘he legs of a trajectory are
generated separately and independently. Ilach leg is the result of two trajectory ,propaga-
tions: first, a reverse (i. e., backwards in time) propagation from the control point for the
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leg to the epoch of the starting breakpoint of the leg; second, a forward propagation from
the control point to the ending breakpoint of the leg. The trajectory generation process is
complete when all the trajectory legs have been determined in this way. Although the cur-
rent implementation of CATO processes the legs sequentially, since the legs are indepen-
dent this formulation is ideal for possible implementation using parallel processors.

At each trajectory breakpoint there is an “incoming” velocity, which results from
forward propagation of the trajectory from the preceding control point, ancl  an “outgoing”
velocity, which results from reverse propagatiorl  of the trajectory from the succeeding
control point. Thus, while the propagation procedure guarantees that a trajectory is con-
tinuous within a leg, there will, in general, be discontinuities  in both position and velocity
at the breakpoints between legs (see Figure 1). In order to achieve a final trajectory that is
continuous in position, constraints are automatically imposed on the optimization requir-
ing that position discontinuities at breakpoints bc zero. Velocity discontinuities, on the
other hand, cannot always be eliminated, since maneuvers may be physically necessary to
fly the trajectory within the constraints. Within the available clegrecs of freedom, how-
ever, the user may choose to impose constraints ] equiring  that velocity discontinuities at
selected breakpoints be constrained to zero, even when this is not optimal.

Placement of Breakpoints and Control Points

For reasons that should be clear from the preceding discussion of trajectory gen-
eration, maneuvers that are subject to optimization may only occur at trajectory break-
points, Thus, breakpoints will normally be placed at points oI~ the trajectory where AV’S
are required or expected to be needed. Apart from this consideration, the placement of
trajectory breakpoints is arbitrary.

The control point for a leg will usually occur between the epochs defining the
bounding breakpoints of the leg. No such requirement is imposed by the CA1’O program
however, ancl  there are situations in which it can be very useful to place the control point
outside this interval. This allows constraints to be imposed on a trajectory leg based on
conditions that lie on a hypothetical extension of the trajectory leg beyond its actual lim-
its. in a later section it will be seen, for example, that this feature can be used to target the
Cassini  Orbiter such that the Cassini Probe will meet certain constraints at its entry into
Titan’s atmosphere. Another natural use of this fuature is for i]nposing  planetary quaran-
tine constraints on certain trajectory legs. In this situation it is desired to constrain the
trajectory such that if a certain maneuver  fails to occur the resulting trajectory must not
impact (for example) the Farth. Apart from considerations such as these, control points
may be placed arbitrarily by the user. In particular, a control point and a breakpoint may
coincide.

A trajectory leg may contain zero, one or more flybys of gravitating bodies. In
normal practice, trajectory breakpoints will be at or near the expected maneuver epochs,
with at least one between significant gravity-assist flybys. A leg will typically contain
one flyby; the control point for the leg will typically be placed at or near the periapsis of
the flyby. None of these situations is in fact required by the method however. Note that
non-zero maneuvers will in general occur at the initial breakpoint, B~, and at the terminal
breakpoint, Brl, if not otherwise constrained.
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ITERATIVE SOLUTION OF THE OPTIMIZATION PROBLEM

The optimization problem is a highly nonlinear one clue to the nonlinear nature of
the multi-body equations of motion. The nonlinear problem is solved as the limiting case
of a series of linear (or “linearized”) problems. Each linearized problem is itself solved it-
eratively as a sequence of problems through a process called “re-weighting the cost func-
tion”.

Thus, the method consists of a loop-within-a-loop structure, with the inner itera-
tion controlling the re-weighting  process and the outer iteration controlling the re-lin-
earization process. When both iterations have converged, the “real” nonlinear problem
with the “real” sum-of-magnitudes cost function has been solved.

The cost function that is minimized is the sum of the AV magnitudes. For numeri-
cal reasons, an indirect approach to computing this cost function is used. The cost func-
tion is:

Avlotol = W]AV12  -t W2AV22 -t- . . . -t M+1AV,,2

where:
n .= number of allowed maneuvers on the trajectory
Avi = magnitude of the ith ~V vector
and wi = scale factor or “weight” associated with the ith maneuver

The wi ‘s are initially set to the somewhat arbitrary value of 1.0. They are then ad-
justed in a series of automated “re-weighting” operations. When iterative re-weighting is
finished, each weight equals

1 / (the corresponding At”)

or, expressed differently, the reciprocal of the weight equals the corresponding AV nlagni-
tudc. The cost function, then, reduces to precisely

AV] + AV2 + . . . + AVlz

i.e., the sum of the AV magnitudes, which is the”] eal” cost function to be minimized.

For each set of weights, the current lineal iz,ed version of the trajectory optin~i~a-
tion problem is solved by a utility linear- least-sc]uares lninimi~,ation  package. When the
re-weighting process converges, the resulting trajectory solution is used to determine a
new linearization of the nonlinear problem; the rc-weighting process is done on this new
linearization, etc., until there is only a negligible change from one linearization to the
next.

RESULTS

To illustrate the characteristics and performance of the computer software that
implements the trajectory optimization method dc.scribed in this paper, several examples
are presented, These include: the trajectory for tile orbital tour phase of the Galileo nlis-
sion; a potential interplanetary transfer trajectory for the Cassini  mission from Earth to
Saturn with 4 intermediate planetary flybys; an example orbital insertion phase trajectory
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for the Cassini  mission that includes both the Probe and Orbiter trajectories to Titan; and
a potential Stardust (proposed Discovery) mission trajectory that incorporates a flyby of
comet Wild-2 and a return to Earth with collected dust samples. In addition to these ex-
amples, CATO will be used in the near future on several trajectory classes involving
multiple lunar flybys to reach near-Earth asteroids and libration  point orbits. Extensive
use in the re-optimization  of the Galileo orbital tour trajectory during ongoing mission
operations is anticipated once successful injection into Jupiter orbit has been achieved on
December 7, 1995. CATO will also be used for the detailed design of the interplanetary
trajectories covering the 30 days of the Cassini  la~mch  period in October-November 1997
as well as the design of candidate orbital tours for the Cassini mission.

Galileo Orbital Tour

The current reference orbital tour described in Ref. 5 r~ras designed with CATO as
discussed in this paper. The process of designin[:  the original version of this tour is de-
scribed in detail in Ref. 6 and used the earlier optimization mcthocls described in Ref. 1.
This current version of the tour represents the final trajectory design prior to Jupiter ar-
rival on December 7, 1995. Once the Galileo Orbiter is in orbit around Jupiter, CATO
will be used at each opportunity for re-optimizin~:  the tour based on updated information
about the actual trajectory and the ephemerides ancl masses of the. Galilean  satellites and
Jupiter itself.

Table 1 shows the position discontinuitics (AR) at the breakpoints for the initial
values of the control point variables used for the generation of this reference tour. It is
seen that several of the values are nearly 100,000 km. Also shown arc the velocity dis-
continuitics (AV) for the 4 breakpoints (the midpoints between two flybys on the same
orbit) at which a AV is not allowed. These values range up to nearly 70 m/s. Not shown
arc the velocity discontinuities for the other breakpoints that arc not constrained to be
zero. “l’hose initial values range from tens to hundreds of meters per second. In the opti-
mization their sum will be minimized,

The control points include the flyby parameters (epoch, altitude, b-plane angle, time from
closest approach and V- vector) for each flyby, as well as an initial control point (epoch
and Jupiter centered Cartesian state) between the. initial stale and the large pcrijove  raise
maneuver (PJR) located near apojove c)f the initial orbit, Following the sixth targeted
flyby (E6) and the ninth targeted flyby (C9), a Jupiter centered control point (using
classical orbital elements) is usecl to constrain the Joviccnttic inclination to achieve a
distant occultation by the satellite 10, For each set of control point variables, those which
arc fixed arc indicated with an (*).

Table 2 shows that for the converged solution all the breakpoint position cliscontinuitics
(AR*) and the velocity discontinuities  for the 4 constrained breakpoints (AR*) are recluced
to zero. The resultant unconstrained AV magnitudes at tlie other breakpoints are also
shown, Of the 13 allowed AV’s, it is seen that only three significant non-zero values
result, All the others optimize to zero or nearly so. The converged solution is reached in
only 4 iterations, The first iteration reduces the largest position mismatch from over
88,000 km to less than 1200 km and reduces the largest constrained velocity mismatch
from over 66 m/s to 0.5 m/s, After the fourth iteration all the position discontinuities  are
less than 0.01 km and the velocity discontinuities are less than 1x10-s n~/s.  References 5
and 6 contain a detailed discussion of the characteristics of this trajectory.
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Table 1

GALlLEO ORBITAL TOUR REFERENCE TRAJECTORY -
INITIAL BREAKPOINT DISCONTINUITIES

AND CONTROL POINT PAFIAMETER SETS

-oints

OTM-2:

PJR:

Post G1 ape:

Post G2 ape:

C3-E3A mid:

Post C3 ape:

Post E4 ape:

Orbit 5 ape:

E6 + 3 days:

Post E6 ape:

E7A-G7 mid:

Post G7 ape:

C8A-G8 mid:

Post G8 ape:

C9-G9A mid:

C9 + 3 days:

Post C9 ape:

Post C1O ape:

Post El 1 ape:

Post E12 ape:

AR= 6,598 km

AR = 2,915 km

AR = 24,594 km

AR = 22,543 km

AR = 340 km
AV = 3.844 mk

AR = 77,293 km

AR = 66,780 km

AR = 56,953 km

AR = 2,962 km

AR = 88,282 km

AR=l,919km
AV = 65.225 m/s

AR = 37,034 km

AR = 1,488 km
AV = 6.437 mfs

AR =61 ,869 km

AR=l,120km
AV = 12.139 IYdS

AR = 7,027 km

AR= 6,667 km

AR= 6,236 km

AR= 9,380 km

unconstrained

Control PQin!s

Pre-PJR Leg: T*, X, Y, ~, vx, vy, vz

Ganytnede-1:  T’, H’, Q, tp’, VW, a, Q

Ganymede-2:  T’, }+, (), tp’, V~, 8, u

Callisto-3: T*, H, 0, tp’, Vm, & u

Europa-3A: T, H, 0, tp’, VW, & a

Europa-4: 1“’, II, 0, tp’, Vm, 8, a

Europa-5A: T, l-i, 0, tp’, Vco, ?+ a

Europa-6: T, II, 0, tp*, Voo, 8, u

Orb 610 OCCUI: 1*, a, e, i*, Q, (J), M

Europa-7A: T, H, 0, tp’, v=, 6, u

Ganymede-7: 1-, F+, f3, tp ’, Vca, & IX

Callisto-8A: T, H, 0, tp’, V~, & a

Ganymede.8:  T, }!, Q, tp’, VW, 8, a

Callisto-9: T, H, 0, tp’, V-, 8, a

Ganymede-9A:  T, H, 0, tp’, V~, & cx

Orb 910 OCCUI: T*, a, e, i*, Q, m, M

Callisto-10: T, H, 0, tp’, V~, 8, a

Europa-n: T, H*, 0, tp’, Vcw, 8,CX

Europa-12: 7“*, I-I*, 0,’ tp’,  Vco, & u
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In these tables the Galilean satellites are i~ldicated  by G, C, and E for Ganymede,
Callisto and Europa respectively, The number indicates the orbit on which the flyby oc-
curs (i. e., C3 for Callisto  on the third orbit) and in the case where two flybys occur on the
same orbit, the more distant one (referred to as “non-targeted”) is indicated with an “A”
(i.e., E3A for the non-targeted Europa on orbit 3).

Table 2

GALlLEO ORBITAL TOUR REFERENCE TRAJECTORY -
CONVERGED CONDITIONS

Breakpoi@~

OTM-2:
PJR:
Post G1 ape:
Post G2 ape:
C3-E3A mid:
Post C3 ape:
Post E4 ape:
Orbit 5 ape:
E6 + 3 days:
Post E6 ape:
E7A-G7 mid:
Post G7 ape:
C8A-G8 mid:
Post G8 ape:
C9-G9A mid:
C9 + 3 days:
Post C9 ape:
Post C1O ape:
Post Ell ape:
Post E12 ape:

AR’
AR*
AR*
AR*
AR’
AR*
AR*
AR*
AR*
AR*
AR*
AR’
AR*
AR’
AR*
AR*
AR*
AR*
AH*

AV = 0.00 lTI/S

AV =3-75.42 rnk
AV = 4.98 rrds
AV*= 0.00 m / s
AV
AV = 0.00 mk

AV = 0.00 m/s
AV = 0.00 n“r/S

AV = 0.00 rrds
AV = 16.00 mk

Av’

AV,= 0.00 mk

AV
AV = 0.00 m/S

AV*
AV = 0.00 fT1/S

AV = 0.09 nlk

AV = 0.00 rrr/s
AV = 0.02 rrds

unconstrained
_________ ___ ._. _— .—. .-. —.

7-OTAL AV 396.51 111/S

Cassini Interplanetary Trajectory

The primary interplanetary trajectory fo] the Cassini  mission to Saturn is known
as a VVEJGA  (Venus-Venus-Earth-Jupiter-Gravity-Assist) trajectory (Ref. 7). This tra-
jectory launches from Earth on October 6, 199’/, flies by Venus on April 21, 1998, and
again on June 20, 1999. I’hen after only 58 days flies by the 13arth  on August 16, 1999.
On December 30, 2000, Jupiter is encountered, with arrival at Saturn on July 1, 2004.
This arrival date was chosen to give the best observation opportunity of the distant satel-
lite Phoebe on Saturn approach,

Table 3 shows the position discontinuities (AR) at the breakpoints for the initial
values of the control point variables used for the generation of this interplanetary trajec-
tory. It is seen that these discontinuities range u~) to more than 26 million kilometers. The
control points include the injection parameters for the departure hyperbola from Earth
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(epoch, altitude, b-plane angle, time of closest a]yx-each, energy, and asymptote direc-
tion), flyby parameters (epoch, altitude, b-plane angle, time of closest approach and V-
vector) for each planetary flyby, and the arrival hyperbola at Saturn (epoch, altitude, b-
plane angle, time of closest approach and V- vector). For each set of control point vari-
ables, those which are fixed are indicated with an (*), Table 4 indicates that for the con-
verged solution all the breakpoint position discontinuities  (A]<*) are reduced to zero. The
resultant unconstrained AV magnitudes at the breakpoints are also indicated. Of the 5
AV’s, it is seen that only the one on the Venus to Venus transfer leg is non-zero. All the
others optimize to zero. This converged solution is also reached in only 4 iterations. The
first iteration reduces the largest position mismatch from over 26,000,000 km to less than
770,000 km. After the fourth iteration all the position discontinuitics  are less than 0.1 km.
Characteristics of the interplanetary transfer trajectories being considered for the Cassini
mission arc discussed in Ref. 7.

Table 3

CASSINI INTERPLANETARY TRAJECTORY - INITIAL BREAKPOINT
DISCONTINUITIES  AND CONTROL POINT PAFIAMETER SETS

EmmJmas

Earth Departure:

Earth-Vi Man:

V1-V2 Man:

V2-Earth-2 Man:

E2-Jupiter Man:

Jup-Saturn  Man:

Saturn Arrival:

Control—— .

unconstrained
Depart Hyp:

AR = 110,058 km
Venus-1:

AR = 2,546,780 km
Venus-2:

AR = 632,873 km
Earth-2:

AR = 1,618,776 km
Jupiter:

AR= 26,477,446 km
Arrival Hyp:

unconstrained

Table 4

F@irlts

T*, Ii*, O’, tp’, C3, &CX

T, Ii’, 0, tp ’, V~, ~,a

T, H, O, tp’, V~, &a

1, H’, o, tp’, Vm, & U

1, t-l, 0, tp’, Vm, 8, a

T*, H*, 6’, tp’, V~, & a

CASSINI INTERPLANETA[{Y TRAJECTORY -
CONVERGED CONDITIONS

E]reakpointS

Earth Departure: unconstrained
Earth-Vi Man: AR* AV = 0.00 nl/s
V1-V2 Man:  A R ’ AV =466.19 rnls
V2-Earth-2 Man: AR’ AV = 0.00 m/s
E2-Jupiter Man: AR* AV = 0.00 m/s
Jup-Saturn Man: AR* AV = 0.00
Saturn Arrival: unconstrained

-—-— —.. -. .
YOTAL  AV 466.19

rnls

rnls
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Cassini Saturn Orbit Insertion and Probe and Orbiter Trajectories to Titan

Theinte~lanetary  trajecto~described  atJoveis  tlleb:~sis  for this trajectory. The
state vector at the breakpoint between Jupiter and Saturn is used as the initial state. The
epoch of the first control point is chosen to be 1 day before Saturn closest approach, but it
specifies osculating closest approach parameters (altitude of closest approach, b-plane
angle and a closest approach time that is 1 day later) with both the altitude and time of
closest approach being constrained. The following breakpoint is 1 day later with an im-
pulsive model for the Saturn Orbit Insertion (S01) maneuver. ‘I ‘he next control point is set
1 day later and is specified as a Cartesian state with respect to Saturn since no constraints
are required, The following breakpoint is approximately at apoapsis  of the initial Saturn
orbit and models the perichrone raise (PCR) ma]leuver  as an impulse. The next control
point applies to the Probe trajectory and specifies the Probe targets for entering the atmo-
sphere of Titan. Note that since the next bre:tkpoint  will be before. this occurs, the very
useful capability of allowing a control point to lie outside the time interval defined by the
two breakpoints that prcceclc  and follow it, allows CATO to integrate the state defined by
the (Probe) control point at Titan backwards in tinle to these breakpoints. The next break-
point is the O-biter Deflection Maneuver (ODM), which is moclclcd  as an impulse and
applies to the Orbiter trajectory that will fly by Titan and on to the orbital tour of Saturn.
The final control point specifies the Orbiter flyby parameters at Titan. As the Orbiter ap-
proaches and then flies by Titan it receives information from the Probe that is descending
into Titan’s atmosphere. Both the Probe and Orbiter control points use hyperbolic orbital
elements with respect to Titan. Certain of these elements are constrained to achieve par-
ticular science objectives. “l’he time difference between the two spacecraft at Titan is also
constrained.

Table 5

CASSINI ORBIT INSERTION TRAJECTORY -
INITIAL BREAKPOINT DISCONTINUITIES

AND CONTROL POINT PARAMETER SETS

Breakpoints Control PoJrIts

Jup-Saturn Man: AR = 1,575,842 km
Arrival Hyp: T*, H*, 0, tp’, Vw, IS, cx

s o l : AR = 1,833 km
Initial Orbit: T’, X, y, Z, vx, vy, vz

PCR: AR = 358,416 km
Probe Entry: T*, !3’, 0’, y’, Vco, 6, a

ODM: AR = 24,422 km
Titan-1 (Orb): T“, H’, 0’, tp’, VW, 8, a

T1-T2 ape: unconstrained

Table 5 shows the position discontinuities  (AR) at the breakpoints for the initial
values of the control point variables used for the generation of this trajectory. It is seen
that these discontinuities  range up to more than 1.5 million kilometers. The control points
are as described above and include a variety of flyby parameters. Table 6 indicates that
for the converged solution all the breakpoint position discontinuities  (AR*) are reduced to
z,ero. The resultant unconstrained AV magnitudes at the breakpoints are also indicated.
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Due to the highly constrained nature of this trajectory problem, only the initial AV is zero
as would be expected. This solution is reached in 4 iterations [is well, even though it is
quite different in nature from the previous two. The first iteration reduces the largest posi-
tion mismatch from over 1,5 million kilometers to less than 7,000 km. After the fourth it-
eration all the position discontinuities  are less thal[ 0.1 km.

Table 6

CASSINI  ORBIT INSERTION TRAJECTORY -
CONVERGED CONDITIONS

I Breakpoints

Jup-Saturn Man: AR* AV = 0.00 m/s
so l : AR’ AV =550.55 rnfs
PCR: AR* AV = 321.20 mls
ODM: AR* AV = 57.32 n“ds
TI-T2 ape: unconstrained

_____ —— .—. - —
ToTAL  A V 929.08 mls

Stardust Interplanetary Trajectory

The Stardust Mission is a proposed Discovery class mission that is designed to
make a fast flyby of comet Wild-2 at a very close approach distance and return to Earth
with samples of the dust and gas from the region close to tlie comet nucleus. The trajec-
tory shown here leaves the Earth on February 15, 1999, on a AVEGA (Delta-V Earth
Gravity Assist) trajectory that re-encounters the 1 iarth on January 17, 2001, to gain suffi-
cient heliocentric energy to encounter comet Wild-2 on January 1, 2004. This trajectory
then returns to the Earth on January 17, 2006.

Table 7

STARDUST INTERPLANETARY TRAJECTORY -
INITIAL BREAKPOINT DISCONTINUITIES

AND CONTROL POINT PARAMETER SETS

Breakpoints @rn!Iol_FZ)ints

Earth Departure: unconstrained
Depart Hyp: T*, H*, 0’, tp’, C3, 6, a

DVEGA Man: AR = 3,012,408 km
Earth Flyby: T, l-t, 0, tp ’, V~, 8, cx

W2 Approach: AR= 4,518,531 km
Wilcl-2: T’, X*, y’, Z*, VX, Vy, Vz

W2-Earth Ret: AR= 408,094 km
Arrival Hyp: T’, H*, Q’, y’, Vco, & a

Earth Arrival: unconstrained
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Table 7 shows the position discontinuities  (AR) at the breakpoints for the initial
values of the control point variables used for the generation of this trajectory. It is seen
that these discontinuities range up to more than 4.5 million kl l], These control points in-
clude the flyby parameters (epoch, altitude, b-plane angle, time of closest approach and
V~ vector) for the planetary and comet flybys as well as the l~arth departure and arrival
parameters. Table 8 indicates that for the converged solution all the breakpoint position
discontinuities (A~*) are reduced to zero. The resultant unconstrained AV magnitudes at
the breakpoints are also indicated, Due to the various constraints, all the AV’s are non-
zero for this case. This solution is reachcci in 6 iterations. The first iteration reduces the
largest mismatch to about 750,000 km, but the next iteration reduces it to less than 2,000
km. After the sixth iteration all the position discontinuitim  are lCSS than 0.1 km.

Table 8

STARDUST 1NTERPLANETAR% TRAJECTORY -
CONVERGED CONDITIONS

Breakpoints

Earth Departure: unconstrained
DVEGA Man: AR* AV = 179.10 m/s
W2 Approach: AR’ AV = 64.50 m/s
W2-Earth  Ret: AR* AV = 1.7’3 mls
Earth Arrival: unconstrained

TOTAL AV 245.33 ;II/s

SUMMARY AND CONCLUSION

A new and very effective method for opti]nizing  complex multi-flyby trajectories
has been implemented and appliecl  to a number operational and proposed missions. The
initial applications have proven quite successful, with the computer program being easy
to use and demonstrating quite robust convergence properties.
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